Lesson 3 - Hyperoperators / Knuth's up-arrow notation

This presentation should help you understand: 2.2.

Presentation made by Mr. A, for a googology canvas course.

What is after exponentiation?

- Consider that addition is repeated succession (counting), multiplication is repeated addition, and exponentiation is repeated multiplication. What would be the next logical step?
- Tetration! Which is repeated exponentiation.

$n \uparrow \uparrow x=n^{n}$
- With tetration we can define numbers that are much larger; for instance, $10 \uparrow \uparrow 10$ is already significantly larger than the Poincare recurrence time.

What's next?

- Well next is pentation:

$$
n \uparrow \uparrow \uparrow x=\overbrace{n \uparrow \uparrow n \uparrow \uparrow n \ldots \uparrow \uparrow n \uparrow \uparrow n}^{x}
$$

- After that its hexation:
$n \uparrow \uparrow \uparrow \uparrow x=\overbrace{n \uparrow \uparrow \uparrow n \uparrow \uparrow \uparrow n \ldots \uparrow \uparrow \uparrow n \uparrow \uparrow \uparrow n}$
- And well we can go on forever naming bigger and bigger hyperoperators.

What's a hyperoperator?

- Some arithmetic operation, which follows the following rules:

$$
\begin{aligned}
& a \uparrow^{1} b=a^{b} \\
& a \uparrow^{n} b=\overbrace{a \uparrow^{n-1} a \uparrow^{n-1} \ldots \uparrow^{n-1} a \uparrow^{n-1} a}^{b}
\end{aligned}
$$

- For the purposes of this course we will use Knuth's uparrow notation, due to it's simplicity, but keep in mind that there are other notations, such as $H_{n}(a, b)$ and $a[n] b$.

